Part Number Hot Search : 
2SK23 FDA16N50 1N5817 512B1 11411331 66TQC 09012 BA2266A
Product Description
Full Text Search
 

To Download IR2302PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet No. PD60207 Rev.A
IR2302(S) & (PbF)
HALF-BRIDGE DRIVER
Features Packages
* Floating channel designed for bootstrap operation * * * * * * * * * * *
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 5 to 20V Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Cross-conduction prevention logic Matched propagation delay for both channels High side output in phase with IN input Logic and power ground +/- 5V offset. Internal 540ns dead-time Lower di/dt gate driver for better noise immunity Shut down input turns off both channels 8-Lead SOIC also available LEAD-FREE (PbF).
8-Lead SOIC IR2302(S) (Also available LEAD-FREE (PbF))
8-Lead PDIP IR2302
2106/2301//2108//2109/2302/2304 Feature Comparison
Part 2106/2301 21064 2108 21084 2109/2302 21094 Input logic HIN/LIN HIN/LIN Crossconduction prevention logic no yes Dead-Time Ground Pins COM VSS/COM COM VSS/COM COM VSS/COM
none Internal 540ns
Programmable 0.54~5 s
Description
IN/SD yes The IR2302(S) are high voltage, high speed Programmable 0.54~5 s power MOSFET and IGBT drivers with depenyes HIN/LIN Internal 100ns 2304 COM dent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
Internal 540ns
Typical Connection
up to 600V VCC
VCC
IN SD
VB HO VS LO
IR2302
TO LOAD
IN SD COM
(Refer to Lead Assignments for correct configuration). This/ These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2302(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO VIN dVS/dt PD RthJA TJ TS TL
Definition
High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (IN & SD) Allowable offset supply voltage transient Package power dissipation @ TA +25C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead PDIP) (8 Lead SOIC) (8 Lead PDIP) (8 Lead SOIC)
Min.
-0.3 VB - 25 VS - 0.3 -0.3 -0.3 COM - 0.3 -- -- -- -- -- -- -50 --
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W
C/W
C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB VS VHO VCC VLO VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (IN & SD) Ambient temperature
Min.
VS + 5 Note 1 VS 5 0 COM -40
Max.
VS + 20 600 VB 20 VCC VCC 150
Units
V
C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
2
www.irf.com
IR2302(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF, and TA = 25C unless otherwise specified.
Symbol
ton toff tsd MT tr tf DT MDT
Definition
Turn-on propagation delay Turn-off propagation delay Shut-down propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = DTLO - HO - DTHO-LO
Min.
550 -- -- -- -- -- 400 --
Typ.
750 200 200 0 130 50 540 0
Max. Units Test Conditions
950 280 280 50 220 80 680 60 nsec VS = 0V VS = 0V VS = 0V VS = 0V or 600V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
VIH VIL VSD,TH+ VSD,THVOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO-
Definition
Logic "1" input voltage for HO & logic "0" for LO Logic "0" input voltage for HO & logic "1" for LO SD input positive going threshold SD input negative going threshold High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic "1" input bias current Logic "0" input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed vurrent Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
2.9 -- 2.9 -- -- -- -- 20 0.4 -- -- 3.3 3 0.1 120 250 -- -- -- -- 0.8 0.3 -- 60 1.0 5 -- 4.1 3.8 0.3 200 350 -- 0.8 -- 0.8 1.4 0.6 50 100 1.6 20 2 5 4.7 -- -- -- VO = 0V, PW 10 s VO = 15V,PW 10 s A mA A V VCC = 10V to 20V VCC = 10V to 20V VCC = 10V to 20V VCC = 10V to 20V IO = 20 mA IO = 20 mA VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V IN = 5V, SD = 0V IN = 0V, SD = 5V
V
mA
www.irf.com
3
IR2302(S) & (PbF)
Functional Block Diagrams
VB
UV DETECT R HV LEVEL SHIFTER PULSE GENERATOR PULSE FILTER R S Q
HO
IN
VSS/COM LEVEL SHIFT
VS
DEADTIME UV DETECT
VCC
+5V
LO
SD
VSS/COM LEVEL SHIFT
DELAY
COM
4
www.irf.com
IR2302(S) & (PbF)
Lead Definitions
Symbol Description
IN SD VB HO VS VCC LO COM
Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
Logic input for shutdown High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
Lead Assignments
1 2 3 4 VCC IN SD COM VB HO VS LO
8
7 6 5
1 2 3 4
VCC IN SD COM
VB HO VS LO
8
7 6 5
8 Lead PDIP
8 Lead SOIC (Also available LEAD-FREE (PbF)
IR2302
IR2302S
www.irf.com
5
IR2302(S) & (PbF)
IN
IN(LO)
50% 50%
SD
IN(HO)
ton
HO LO
tr 90%
toff 90%
tf
LO HO
Figure 1. Input/Output Timing Diagram
10%
10%
Figure 2. Switching Time Waveform Definitions
50%
50%
IN
90%
SD
50%
HO LO
DT LO-HO
10% DT HO-LO
90%
tsd
HO LO
90%
MDT= DT LO-HO
10% - DTHO-LO
Figure 3. Shutdown Waveform Definitions
Figure 4. Deadtime Waveform Definitions
6
www.irf.com
IR2302(S) & (PbF)
IN (LO)
50% 50%
IN (HO)
LO
HO
10%
MT 90%
MT
LO
HO
Figure 5. Delay Matching Waveform Definitions
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
1300 1100 900 700 500
M ax.
1500 1300
M ax.
1100
Typ.
900 700 500 300 5 10 15 20 Supply Voltage (V) Figure 6B. Turn-on Propagation Delay vs. Supply Voltage
Mi n.
Typ. Mi n.
300 -50
-25
0
25
50
75
100 125
Temperature (oC) Figure 6A. Turn-on Propagation Delay vs. Tem perature
www.irf.com
7
IR2302(S) & (PbF)
Turn-on Propagation Delay (ns)
Turn-off Propagation Delay (ns)
1300 1100
M ax.
500 400 300
M ax.
900
Typ.
700
Mi n.
200
Typ.
500 300 3 6 9 Input Voltage (V) Figure 6C. Turn-on Propagation Delay vs. Input Voltage 12 15
100 0 -50
-25
0
25
50
75
100 125
Temperature (oC) Figure 7A. Turn-off Propagation Delay vs. Tem perature
Turn-off Propagation Delay (ns)
Turn-off Propagation Delay (ns)
700 600 500 400
Typ. M ax.
400 350 300 250
Typ. M ax.
300 200 100 5 10 15 20 Supply Voltage (V) Figure 7B. Turn-off Propagation Delay vs. Supply Voltage
200 150 100 3 6 9 Input Voltage (V) Figure 7C. Turn-off Propagation Delay vs. Input Voltage 12 15
8
www.irf.com
IR2302(S) & (PbF)
Shut-down Propagation Delay (ns)
500 400 300
M ax.
Shut-down Propagation Delay (ns)
700 600 500 400 300
Typ. M ax.
200
Typ.
100 0 -50
200 100 5 10 15 20 Supply Voltage (V) Figure 8B. Shut-dow n Propagation Delay vs. Supply Voltage
-25
0
25
50
75
100 125
Temperature (oC) Figure 8A. Shut-dow n Propagation Delay vs. Tem perature
Shut-down Propagation Delay (ns)
400 350 300 250 200 150 100 3 6 9 Input Voltage (V) Figure 8C. Shut-dow n Propagation Delay vs. Input Voltage 12 15
Typ. M ax.
500 Turn-on Rise Time (ns) 400 300 200 100
Typ. M ax.
0 -50
-25
0
25
50
75
100 125
Temperature (oC) Figure 9A. Turn-on Rise Tim e vs. Tem perature
www.irf.com
9
IR2302(S) & (PbF)
700 Turn-on Rise Time (ns) Turn-off Fall Time (ns) 600 500 400 300 200 100 0 5 10 15 20 Supply Voltage (V) Figure 9B. Turn-on Rise Tim e vs. Supply Voltage
Typ. M ax.
200 150 100
M ax.
50
Typ.
0 -50
-25
0
25
50
o
75
100 125
Temperature ( C) Figure 10A. Turn-off Fall Time vs. Tem perature
200 Turn-off Fall Time (ns)
1000 800
M ax.
M ax.
Deadtime (ns)
150
100
Typ.
600
Typ.
50
400
Mi n.
0 5 10 15 20 Supply Voltage (V) Figure 10B. Turn-off Fall Tim e vs. Supply Voltage
200 -50 -25
0
25
50
o
75
100 125
Temperature ( C)
Figure 11A. Deadtim e vs. Tem perature
10
www.irf.com
IR2302(S) & (PbF)
1000 800 Deadtime (ns) 600
Mi n. M ax.
7 6 Deadtime ( s) 5 4 3 2 1 0
5 10 15 20
M ax. Typ. Mi n.
Typ.
400 200 0 Supply Voltage (V) Figure 11B. Deadtim e vs. Supply Voltage
0
50
100 RDT (K)
150
200
Figure 11C. Deadtime vs. RDT
6 Logic "1" Input Voltage (V) 5 4
M ax.
6 Logic "1" Input Voltage (V)
0 25 50 75 100 125
5 4
M ax.
3 2 1 0 -50
3 2 1 0
-25
5
10
15
20
Temperature ( oC) Figure 12A. Logic "1" Input Voltage vs. Tem perature
Supply Voltage (V) Figure 12B. Logic "1" Input Voltage vs. Supply Voltage
www.irf.com
11
IR2302(S) & (PbF)
6 Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
6 5 4 3 2 1 0
Mi n.
5 4 3 2 1 0 -50
Mi n.
-25
0
25
50
75
100
125
5
10
15
20
Temperature (oC) Figure 13A. Logic "0" Input Voltage vs. Temperature
Supply Voltage (V)
Figure 13B. Logic "0" Input Voltage vs. Supply Voltage
SD Input Positive Going Threshold (V
6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Temperature ( oC)
M ax.
SD Input Positive Going Threshold (V
6 5 4 3 2 1 0 5 10 15 20 Supply Voltage (V)
M ax.
Figure 14A. SD Input Positive Going Threshold vs. Tem perature
Figure 14B. SD Input Positive Going Threshold vs. Supply Voltage
12
www.irf.com
IR2302(S) & (PbF)
SD Input Negative Going Threshold (V)
6 5 4 3 2 1 0 -50
Mi n.
SD Input Negative Going Threshold (V
6 5 4 3 2 1 0 5 10 15 20 Supply Voltage (V)
Mi n.
-25
0
25
50
75
100
125
Temperature (oC) Figure 15A. SD Input Negative Going Threshold vs. Tem perature
Figure 15B. SD Input Negative Going Threshold vs. Supply Voltage
High Level Output Voltage (V)
High Level Output Voltage (V)
4 3 2
M ax.
6 5 4 3 2
Typ. M ax.
1
Typ.
1 0 5 10 15 20 Supply Voltage (V) Figure 16B. High Level Output Voltage vs. Supply Voltage
0 -50
-25
0
25
50
o
75
100
125
Temperature ( C) Figure 16A. High Level Output Voltage vs. Tem perature
www.irf.com
13
IR2302(S) & (PbF)
Low Level Output Voltage (V)
Low Level Output Voltage (V)
2.0 1.5 1.0 0.5
M ax.
2.0 1.5
M ax.
1.0 0.5
Typ.
Typ.
0.0 -50
0.0 5 10 15 20 Supply Voltage (V) Figure 17B. Low Level Output Voltage vs. Supply Voltage
-25
0
25
50
o
75
100 125
Temperature ( C) Figure 17A. Low Level Output Voltage vs. Tem perature
500 400 300 200 100
M ax.
Offset Supply Leakage Current (mA)
Offset Supply Leakage Current ( A)
500 400 300 200 100
M ax.
0 -50
-25
0
25
50
75
100 125
0 100
200
300
400
500
600
Temperature (oC) Figure 18A. Offset Supply Leakage Current vs. Tem perature
Offset Supply Voltage (V) Figure 18B. Offset Supply Leakage Current vs. Offset Supply Voltage
14
www.irf.com
IR2302(S) & (PbF)
Quiescent VBS Supply Current ( A)
Quiescent V BS Supply Current ( A)
200 150 100
M ax. Typ.
200 150
100 50 0 5 10 15 20 V BS Supply Voltage (V) Figure 19B. Quiescent V BS Supply Current vs. V BS Supply Voltage
M ax. Typ. Mi n.
50
Mi n.
0 -50
-25
0
25
50
o
75
100 125
Temperature ( C) Figure 19A. Quiescent V BS Supply Current vs. Tem perature
Quiescent VCC Supply Current (mA)
Quiescent VCC Supply Current (mA)
3.0 2.5 2.0
M ax
3 2.5 2 1.5 1 0.5 0 5 10 15 V CC Supply Voltage (V) 20
M ax. Typ. Mi n.
1.5
Typ.
1.0 0.5 0.0 -50
Mi n.
-25
0
25
50
75
100 125
Temperature (oC) Figure 20A. Quiescent V CC Supply Current vs. Tem perature
Figure 20B. Quiescent V CC Supply Current vs. V CC Supply Voltage
www.irf.com
15
IR2302(S) & (PbF)
Logic "1" Input Bias Current ( A)
60 50 40 30 20 10
M ax. Typ.
Logic "1" Input Bias Current (mA)
50 40 30 20 10 0 5 10 15 20 Supply Voltage (V) Figure 21B. Logic "1" Input Bias Current vs. Supply Voltage
M ax.
Typ.
0 -50
-25
0
25
50
75
100 125
Temperature (oC) Figure 21A. Logic "1" Input Bias Current vs. Tem perature
Logic "0" Input Bias Current ( A)
5 4 3
M ax.
Logic "0" Input Bias Current (mA)
5 4 3 2 1 0 5 10 15 Supply Voltage (V) 20
M ax.
2 1 0 -50
-25
0
25
50
75
100
125
Temperature ( oC) Figure 22A. Logic "0" Input Bias Current vs. Tem perature
Figure 22B. Logic "0" Input Bias Current vs. Supply Voltage
16
www.irf.com
IR2302(S) & (PbF)
V CC and VBS Undervoltage Threshold (+) (V)
6 5 4
Mi n. M ax.
V CC and VBS Undervoltage Threshold (-) (V)
6 5 4 3 2 -50
M ax.
Typ.
Typ.
Mi n.
3 2 -50
-25
0
25
50
o
75
100 125
-25
0
25
50
o
75
100 125
Temperature ( C) Figure 23. V CC and V BS Undervoltage Threshold (+) vs. Tem perature
Temperature ( C) Figure 24. V CC and V BS Undervoltage Threshold (-) vs. Tem perature
Output Source Current (mA)
Output Source Current (mA)
400 300
Typ.
400 300
200
Mi n.
200 100 0
100 0 -50
Typ.
Mi n.
-25
0
25
50
75
100 125
5
10
15
20
Temperature (oC) Figure 25A. Output Source Current vs. Tem perature
Supply Voltage (V) Figure 25B. Output Source Current vs. Supply Voltage
www.irf.com
17
IR2302(S) & (PbF)
600 Output Sink Current (mA)
600 Output Sink Current (mA) 500 400 300 200
Typ.
500
Typ.
400 300 200 100 0 -50
Mi n.
100
Mi n.
0
-25 0 25 50 75 ( oC) 100 125
5
10
15
20
Temperature
Supply Voltage (V) Figure 26B. Output Sink Current vs. Supply Voltage
Figure 26A. Output Sink Current vs. Tem perature
Maximum V Negative Offset (V) S
0 -2
Typ.
140 120 Temprature (oC) 100 80 60 40
5 10 15 20
140V 70V 0V
-4 -6 -8 -10 -12 V BS Floating Supply Voltage (V) Figure 27. Maxim um V S Negative Offset vs. V BS Floating Supply Voltage
20 1 10 100 1000 Frequency (KHz) Figure 28. IR2302 vs. Frequency (IRFBC20), Rgate=33 , VCC=15V
18
www.irf.com
IR2302(S) & (PbF)
140 120 Temperature (oC) 100
140V
140 120 Temperature (oC) 100
140V
80
70V
80 60 40 20
70V 0V
60 40 20 1 10 100
0V
1000
1
10
100
1000
Frequency (KHz)
Figure 29. IR2302 vs. Frequency (IRFBC30), Rgate=22, VCC=15V
Frequency (KHz) Figure 30. IR2302 vs. Frequency (IRFBC40), Rgate=15 , VCC=15V
140 120 Temperature (oC) 100 80 60 40 20 1 10 100
140V 70V
140
0V
120 Temperature (oC) 100 80 60 40 20
140V 70V 0V
1000
1
10
100
1000
Frequency (KHz) Figure 31. IR2302 vs. Frequency (IRFPE50), Rgate=10 , V CC=15V
Frequency (KHz) Figure 32. IR2302S vs. Frequency (IRFBC20), Rgate=33 , VCC=15V
www.irf.com
19
IR2302(S) & (PbF)
140
140 120
140V
140V 70V
Temperature (oC)
120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 33. IR2302S vs. Frequency (IRFBC30), Rgate=22 , V CC=15V
70V 0V
0V
100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 34. IR2302S vs. Frequency (IRFBC40), Rgate=15 , VCC=15V
140 120 Tempreture (oC) 100 80 60 40 20 1 10
140V 70V 0V
100
1000
Frequency (KHz) Figure 35. IR2302S vs. Frequency (IRFPE50), Rgate=10 , V CC=15V
20
www.irf.com
IR2302(S) & (PbF)
Case Outlines
8 Lead PDIP
D A 5 B
FOOTPRINT 8X 0.72 [.028]
01-6014 01-3003 01 (MS-001AB)
DIM A b c D
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45
8X b 0.25 [.010]
NOTES:
A1 CAB
8X L 7
8X c
1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8 Lead SOIC
www.irf.com
01-6027 01-0021 11 (MS-012AA)
21
IR2302(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free) 8-Lead PDIP IR2302 order IR2302 8-Lead SOIC IR2302S order IR2302S Leadfree Part 8-Lead PDIP R2302 not available 8-Lead SOIC IR2302S order IR2302SPbF
Thisproduct has been designed and qualified for the Automotive market. Qualification Standards can be found on IR's Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 8/16/2004
22
www.irf.com


▲Up To Search▲   

 
Price & Availability of IR2302PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X